EGU2020-20474
https://doi.org/10.5194/egusphere-egu2020-20474
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Competitive divalent cation incorporation in the ferrous phosphate mineral vivianite

L. Joëlle Kubeneck, Laurel K. ThomasArrigo, Katherine A. Rothwell, and Ruben Kretzschmar
L. Joëlle Kubeneck et al.
  • Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, CHN, ETH Zurich, 8092 Zurich, Switzerland

Phosphorus (P) is often a limiting nutrient in soils and aquatic systems, but excessive concentrations can lead to eutrophication. The chemical forms in which P is retained in soils and sediments determine its bioavailability. Under reducing conditions, the ferrous phosphate mineral vivianite has been shown to be a major P burial phase in various environments such as coastal sediments. Depending on the local environmental geochemistry, ferrous iron (Fe2+) can be substituted by other divalent cations such as magnesium (Mg2+) and manganese (Mn2+). The substitution of Fe2+ could alter mineralogical characteristics of vivianite, which influences its further reactivity and thus the P and iron (Fe) cycle. Despite the importance of divalent cation substitution in vivianite in the environment, questions remain if certain divalent cations are preferentially incorporated and how they compete for substitution.

Here, we assessed the competitive incorporation of Mn2+ and Mg2+ into vivianite by carrying out vivianite precipitation experiments in anoxic aqueous solutions at pH 7. Additionally, we explored how varying salinity simulating an estuarine gradient influences the incorporation of Mn2+ and Mg2+. Changes in mineralogy with different degrees of Mn2+/ Mg2+ substitution were studied with X-ray powder diffraction, Raman spectroscopy, total elemental dissolution and other techniques.

Based on 19 different vivianites, our results demonstrate that Fe2+ is replaced by up to 50% by Mn2+/ Mg2+ in the vivianite structure, with preferential incorporation of Mn2+ over Mg2+. Increases in salinity seem to slightly enhance divalent cation incorporation. Following from our results, we will discuss the factors influencing divalent cation incorporation into vivianite, and how divalent cation substitution alters mineralogical characteristics. Finally, we will highlight how the substitution of Fe2+ by other divalent cations potentially enhances P fixation in form of vivianite under Fe-limiting conditions.

How to cite: Kubeneck, L. J., ThomasArrigo, L. K., Rothwell, K. A., and Kretzschmar, R.: Competitive divalent cation incorporation in the ferrous phosphate mineral vivianite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20474, https://doi.org/10.5194/egusphere-egu2020-20474, 2020

Displays

Display file