Glacio-hydrological modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Garhwal Himalaya (India)

Mohd Farooq Azam and Smriti Srivastava
Indian Institute of Technology Indore, Civil Engineering, Indore, India (farooqaman@yahoo.co.in)

Glacier-wide mass balances and catchment-wide runoffs are reconstructed over 1979-2018 for Dokriani Glacier catchment in the Garhwal Himalaya (India). A glacio-hydrological model including temperature-index, accumulation, rain and evapotranspiration modules is used for the reconstruction using daily air-temperature and precipitation fields from ERA5 data. Model is calibrated using 6 years of observed annual glacier-wide mass balances (1993-1995 and 1998-2000) and observed summer mean monthly runoff (1994, 1998-2000) data. Modelled mass wastage on Dokriani Glacier is moderate with annual loss of -0.28 ± 0.38 m w.e. a^{-1} over 1979-2018. The mean winter glacier-wide mass balance is 0.62 ± 0.38 m w.e. a^{-1} while mean summer glacier-wide mass balance is -0.91 ± 0.38 m w.e. a^{-1} over 1979-2018. The mean annual catchment-wide runoff is 1.38 ± 0.11 m3 s$^{-1}$ over 1979-2018. Maximum runoff is produced during summer-monsoon months with a peak in August (5.35 m3 s$^{-1}$). Rainfall contributes the maximum to the total mean annual runoff with 44% share while snow melt and ice melt contribute 35% and 22%, respectively. The loss through evapotranspiration is only around 2% of the total runoff. The heterogeneous debris-cover distribution over lower ablation area (<5000 m a.s.l.) protects the glacier for higher melting. Decadal mass balances suggest that Dokriani Glacier was close to steady-state conditions over 1989-1997 because of negative temperature anomaly and positive precipitation anomaly over this period. Mass balance and runoff are the most sensitive for threshold temperature for melt with sensitivities of -0.71 m w.e. $a^{-1}\circ C^{-1}$ and 0.18 m3 s$^{-1}\circ C^{-1}$, respectively.