Millennial-scale variations in atmospheric N2O during the past 2000 years

Yeongjun Ryu¹, Jinho Ahn¹, Ji-Woong Yang¹, Ed Brook², Axel Timmermann³,⁴, Thomas Blunier⁵, Soondo Hur⁶, and Seong-Joong Kim⁶

¹Seoul National University, Seoul, South Korea
²College of Earth, Ocean & Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
³Center for Climate Physics, Institute for Basic Science (IBS), Busan, South Korea
⁴Pusan National University, Pusan, South Korea
⁵University of Copenhagen, Copenhagen, Denmark
⁶Korea Polar Research Institute (KOPRI), Incheon, South Korea

Improved knowledge of greenhouse gas-climate feedbacks is required to understand past and future climate changes. Atmospheric nitrous oxide (N₂O) is of concern for its potential role in global warming and future stratospheric ozone destruction. Existing ice core N₂O records for the Holocene have not been sufficient consistent to allow an examination of small changes on sub-millennial time scales. Here, we present new high-resolution and high-precision N₂O records obtained from the Greenland NEEM (North Greenland Eemian Ice Drilling) and Antarctic Styx Glacier ice cores. Our reconstruction shows, for the first time, a centennial-scale variability of ~10 ppb during the last 2000 years. Comparisons with proxy records suggest that centennial- to millennial-scale variations in N₂O are driven, to a large extent, by changes in tropical and subtropical land hydrology and marine productivity.