Land plants and terrestrial environmental changes during the onset of the end-Triassic event

Sofie Lindström¹, Hans Peter Nytoft¹, Gunver K. Pedersen¹, Grzegorz Niedzwiedzki², Karen Dybkjær¹, Leif Johansson³, Henrik I. Petersen⁴, Hamed Sanei⁵, Christian Tegner⁵, and Rikke Weibel¹

¹GEUS, Stratigraphy Department, Copenhagen K, Denmark (sli@geus.dk; hpn@geus.dk; gkp@geus.dk; kd@geus.dk; rwh@geus.dk)
²Department of Organismal Biology, Uppsala University, Uppsala (grzegorz.niedzwiedzki@ebc.uu.se)
³Department of Geology, Lund University, Sweden (leif.johansson@geol.lu.se)
⁴Total Upstream Denmark A/S, Copenhagen, Denmark (henrik-ingermann.petersen@total.com)
⁵Institute of Geoscience, Aarhus University, Denmark (sanei@geo.au.dk; christian.tegner@geo.au.dk)

The end-Triassic mass extinction is considered to have been caused by voluminous and repeated emissions of CO₂ and/or methane and other gases from magmatic activity in the Central Atlantic Magmatic Province. Despite improved geochronological dating and correlation between the magmatic activity and the extinctions, exactly how the biotic crisis commenced remains poorly understood. Here, we compile palynological and palaeobotanical data, bulk organic δ¹³C, biomarkers, mercury and other geochemical proxies, charcoal, and sedimentology, from a Rhaetian terrestrial succession in southern Sweden. Our results provide an insight into the climatic, environmental and ecosystem changes that took place at the onset of the mass extinction event.