Low-temperature thermochronologic constraints on the tectonic evolution of the Subei and Shibaocheng areas, northern Tibetan Plateau

Jianfeng Li¹, Zhicheng Zhang², and Yue Zhao³

¹Institute of Geomechanics, Chinese Academy of Geological Sciences, China (lijianfeng217@sina.com)
²Peking university (czhang@pku.edu.cn)
³Institute of Geomechanics, Chinese Academy of Geological Sciences, China (yue_zhao@cags.ac.cn)

The northern Tibetan Plateau, between the Kunlun and the Altn Tagh faults, contains high relief topography, such as the Eastern Kunlun Range, the Altn Tagh Range and the Qilian mountain belt, and plays an important role in researching the tectonic evolution and topographic growth of the Tibetan Plateau. We present new apatite fission track (AFT) and 40Ar/39Ar thermochronologic data from the Subei and Shibaocheng areas near the eastern Altn Tagh fault. Two Cenozoic exhumation phases have been identified from our AFT thermochronology. The AFT cooling ages of ~ 60–40 Ma farther away from the faults represented a slow widespread denudation surface as response to the Indo-Eurasia collision and signified that the Subei and Shibaocheng areas denudated as a whole in the northern Tibetan Plateau. Another phase with AFT cooling ages between about 20.5 Ma to 13.6 Ma on the hanging walls near the faults, located in the Danghenanshan and Daxueshan Mountains, recorded widespread fault activities resulted from local uplift and exhumation in late Miocene (~ 8 Ma) acquired from AFT thermal history modeling. A Cretaceous exhumation (~ 120–70 Ma) acquired from AFT thermal history modeling may have made great contributions to the growth of the pre-Cenozoic northern Tibetan Plateau.