EGU2020-21045
https://doi.org/10.5194/egusphere-egu2020-21045
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Heterogenous snow cover derived uncertainty in Arctic carbon budget

Hotaek Park1 and Youngwook Kim2
Hotaek Park and Youngwook Kim
  • 1JAMSTEC, Yokosuka, Japan (park@jamstec.go.jp)
  • 2Department of Biology, College of Science, United Arab Emirates University, UAE (youngwook.kim@ntsg.umt.edu)

The winter of northern Arctic regions is characterized by strong winds that lead to frequent blowing snow and thus heterogeneous snow cover, which critically affects permafrost hydrothermal processes and the associated feedbacks across the northern regions. However until now, observations and models have not documented the blowing snow impacts. The blowing snow process has coupled into a land surface model CHANGE, and the improved model was applied to observational sites in the northeastern Siberia for 1979–2016. The simulated snow depth and soil temperature showed general agreements with the observations. To quantify the impacts of blowing snow on permafrost temperatures and the associated greenhouse gases, two decadal experiments that included or excluded blowing snow, were conducted for the observational sites and over the pan-Arctic scale. The differences between the two experiments represent impacts of the blowing snow on the analytical components. The blowing snow-induced thinner snow depth resulted in cooler permafrost temperature and lower active layer thickness; this lower temperature limited the vegetation photosynthetic activity due to the increased soil moisture stress in terms of larger soil ice portion and hence lower ecosystem productivity. The cooler permafrost temperature is also linked to less decomposition of soil organic matter and lower releases of CO2 and CH4 to the atmosphere. These results suggest that the most land models without a blowing snow component likely overestimate the release of greenhouse gases from the tundra regions. There is a strong need to improve land surface models for better simulations and future projections of the northern environmental changes.

How to cite: Park, H. and Kim, Y.: Heterogenous snow cover derived uncertainty in Arctic carbon budget, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21045, https://doi.org/10.5194/egusphere-egu2020-21045, 2020