Modern plate tectonic cycles are inherited from Hadean mantle convection

Ross N. Mitchell1,2, Christopher J. Spencer2,3, Uwe Kirscher2,4, and Simon A. Wilde2

1Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China (ross.mitchell@mail.iggcas.ac.cn)
2School of Earth and Planetary Sciences, Curtin University, Perth, Australia
3Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Canada
4Department of Geosciences, University of Tübingen, Tübingen, Germany

Earth’s oldest preserved crustal archive, the Jack Hills zircon of Western Australia, has been controversial to interpret in terms of the onset of plate tectonics. Here we conduct time series analysis on hafnium isotopes of the Jack Hills zircon and reveal an array of statistically significant cycles that are reminiscent of plate tectonics, i.e., subduction. At face value, such cycles may suggest early Earth conditions similar to today—the uniformitarian “day one” hypothesis. On the other hand, in the context of expected secular changes due to planetary evolution and geological observations, the cycles could instead imply that modern plate tectonic subduction inherited convective harmonics already facilitated by an early phase of stagnant-lid delamination—the “lid-to-plates” hypothesis. Either way, any model for the initiation of plate tectonics must begin in Hadean time.