The impact of glaciers on the long-term hydrology of a high-elevation Andean catchment

Michael McCarthy1,2, Flavia Burger3, Alvaro Ayala4, Stefan Fugger1, Thomas E Shaw5, Evan Miles1, Shelley MacDonell6, Atanu Bhattacharya6, Tobias Bolch6, James McPhee5, and Francesca Pellicciotti1,3

1Swiss Federal Institute for Forest Snow and Landscape Research, Mountain Hydrology and Mass Movements, Birmensdorf, Switzerland (michael.mccarthy@wsl.ch)
2British Antarctic Survey, Ice Dynamics and Palaeoclimate, Cambridge, UK
3Northumbria University, Department of Geography and Environmental Sciences, Newcastle upon Tyne, UK
4Centro de Estudios Avanzados en Zonas Aridas, La Serena, Chile
5Universidad de Chile, Department of Civil Engineering, Santiago, Chile
6University of St Andrews, School of Geography and Sustainable Development, St Andrews, UK

The Andean cryosphere is a vital water resource for downstream populations. In recent years, it has been in steep decline as a whole, but shown strong spatio-temporal variability due to climatic events such as the current mega drought in central Chile. Glacio-hydrological models are necessary to understand and predict changes in water availability as a result of changes to the cryosphere. However, due to a lack of data for initialisation, forcing, calibration and validation, they are rarely used, especially in the Andes, for periods longer than a few years or decades. While useful insights can be gained from short-term modelling, there is a gap in our understanding of how glaciers impact hydrology on longer timescales, which may prevent local communities and governments from achieving effective planning and mitigation. Here we use the glacio-hydrological model TOPKAPI-ETH – initialised, forced, calibrated and validated using unique and extensive field and remote sensing datasets – to investigate glacier contributions to the streamflow of the high-elevation Rio Yeso catchment, Chile, over the past 50 years. We focus in particular on: 1) fluctuations in glacier surface mass balance and runoff and associated climatic variability; 2) if peak water has already occurred and when; 3) the effect of supraglacial debris cover on seasonal and long-term hydrographs. We offer insights into some of the challenges of running glacio-hydrological models on longer timescales and discuss the implications of our findings in the context of a shrinking Andean cryosphere.