GIMO – a new geospatial tool for On-site Inspection data collection and techniques integration

Gustavo Haquin Gerade¹, Peter Labak¹, Aled Rowlands¹, Nenad Sterić², Oleksandr Shabelnyk², Magnus Ahlander², and Alicia Lobo²

¹CTBT, Vienna, Austria (gustavo.haquin@ctbto.org)
²Zuehlke GmbH, Vienna, Austria

An on-site inspection (OSI) is conducted to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the Treaty. The conduct of inspection activities requires an approach that takes into account the operational, technical and time constraints specified in the Treaty. A systematic approach was developed, namely, the information-led search logic for the inspection team (IT) to function effectively. The core of the search logic is inspection data acquired. The realization of the search logic is the Inspection Team Functionality (ITF) which its essential element is having the most updated inspection data readily available to inspectors to facilitate the planning, processing and reporting.

To facilitate the work of an IT, the Provisional Technical Secretariat launched a project to develop a map centric tool to support the IT. The Geospatial Information Management system for On-site inspections (GIMO), supports decision-making and facilitates the progress of an inspection and not hinder it in anyway. At its core is the facilitation of the ITF concept and chain of custody of samples and electronic media. It is a single tool for planning inspection activities, managing data collection in the field, integration of data generated by the implementation of OSI techniques and reporting. Information security, chain of custody and confidentiality requirements are applied in GIMO following the need-to-know principle. GIMO, 3D geospatially centric software, has no software dependencies outside the internal local area network as required by the Treaty. The modular nature of GIMO means that additional functionality can be embedded as and when needed.