

EGU2020-21651, updated on 29 Oct 2020 https://doi.org/10.5194/egusphere-egu2020-21651 EGU General Assembly 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Constraining ice core chronologies with ³⁹Ar and ⁸¹Kr

Florian Ritterbusch¹, Yan-Qing Chu¹, Ilaria Crotti², Xi-Ze Dong¹, Ji-Qiang Gu¹, Shui-Ming Hu¹, Wei Jiang¹, Amaelle Landais³, Volodya Lipenkov⁴, Zheng-Tian Lu¹, Lili Shao⁵, Barbara Stenni², Taldice Team⁶, Lide Tian⁵, A-Min Tong¹, Wen-Hao Wang¹, and Lei Zhao¹

Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods are not readily applied. The noble gas radioisotopes ⁸¹Kr and ³⁹Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. ⁸¹Kr (half-life 229 ka) covers the time span from 50-1300 ka, which is particularly relevant for polar ice cores, whereas ³⁹Ar (half-life 269 a) with a dating range of 50-1400 a is suitable for high mountain glaciers. For a long time the use of ⁸¹Kr and ³⁹Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size. Here, we report on ⁸¹Kr and ³⁹Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for ⁸¹Kr and 2-5 kg for ³⁹Ar. Among others, we measured ⁸¹Kr in the lower section of Taldice ice core, which is difficult to date by conventional methods, and in the meteoric bottom of the Vostok ice core in comparison with an age scale derived from hydrate growth. Moreover, we have obtained an ³⁹Ar profile for an ice core from central Tibet in combination with a timescale constructed by layer counting. The presented studies demonstrate how the obtained ⁸¹Kr and ³⁹Ar ages can complement other methods in developing an ice core chronology, especially for the bottom part.

- [1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)
- [2] C. Buizert, Radiometric ⁸¹Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, **111**, 6876, (2014)
- [3] L. Tian, ⁸¹Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)
- [4] http://atta.ustc.edu.cn

¹USTC Hefei, Hefei, China (florian@ustc.edu.cn)

²Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy

³IPSL/LSCE, CNRS/CEA/UVSQ/Université Paris Saclay, 91190 Gif sur Yvette, France

⁴Arctic and Antarctic Research Institute, St Petersburg, Russia

⁵Institute of International Rivers and Eco-security, Yunnan University

⁶www.taldice.org