Enhancing Precipitation Prediction Algorithm by Data Assimilation of GPM Observations

Takemasa Miyoshi1, Shunji Kotsuki1,2, Koji Terasaki1, Shigenori Otsuka1, Ying-Wen Chen3, Kaya Kanemaru4, Masaki Satoh3, Hisashi Yashiro5, Hirofumi Tomita1, Keiichi Kondo6, Kozo Okamoto6, Eugenia Kalnay7, and Takuji Kubota8

1RIKEN, Kobe, Japan (takemasa.miyoshi@riken.jp)
2Chiba University, Chiba, Japan
3Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
4National Institute of Information and Communications Technology, Koganei, Japan
5National Institute for Environmental Studies, Tsukuba, Japan
6Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
7University of Maryland, College Park, Maryland, USA
8JAXA, Tsukuba, Japan

In precipitation science, satellite data have been providing precious, fundamental information, while numerical models have been playing an equally important role. Data assimilation integrates the numerical models and real-world data and brings synergy. We have been working on assimilating the GPM data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) using the Local Ensemble Transform Kalman Filter (LETKF). We continue our effort on “Enhancing Precipitation Prediction Algorithm by Data Assimilation of GPM Observations” funded by JAXA, following successful completion of the 3-year project titled “Enhancing Data Assimilation of GPM Observations” from April 2016 to March 2019. The project first started in April 2013 on “Ensemble-based Data Assimilation of TRMM/GPM Precipitation Measurements”, where we developed a global data assimilation system NICAM-LETKF from scratch. This presentation will provide a summary of the past 7-year effort with more emphasis on the recent achievements, including JAXA’s near-real-time analysis called NEXRA (NICAM-LETKF JAXA Research Analysis) and new theoretical developments of Local Particle Filter to treat highly non-Gaussian distributions of precipitation variables in data assimilation.