EGU2020-21752
https://doi.org/10.5194/egusphere-egu2020-21752
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

A two-phase dilatant debris flow model based on full scale shear stress and pore pressure measurements

Guillaume Meyrat
Guillaume Meyrat
  • SLF, RAMMS group, Davos Frauenkirch, Switzerland (guillaume.meyrat@slf.ch)

Since 2004, observations of shear and normal stresses have been collected at the base of naturally-triggered debris flows at the Illgraben observation station (Wallis, Switzerland) [1].   Because flow height and the normal force are simultaneously measured, and limited observations of basal fluid pore pressure are available, it is possible to investigate how the solid/fluid contents of the flow influence the measured shear stress.  The experimental results have emphasized two debris flow properties: (1) Debris flows are characterized by rocky or boulder-rich front, following by a fluidized tail. Consequently, the mass density varies from large values at the front of the flow to lower values towards the tail. A comparison between different debris flow events, however, likewise reveals that the streamwise change in density can vary dramatically between two different events. (2) The relationship between the measured shear and normal tress is highly non-linear. 

Operating on the assumption that the streamwise change in density (or equivalently change in streamwise composition) is primarily responsible for the observed non-linear stress behavior, we develop a rheological model describing two-phase debris flow motion. The underlying idea behind the model is that the granular content of the flow can dilate, changing the solid/fluid composition of the flow, and thereby alter the bulk flow density. The model allows us to estimate the correct debris flow composition for different classes of debris flow varying from granular to muddy fluid. Based on these results, we are then able to reproduce the measured shear stress data when we simulate the measured events numerically.  The results appear to confirm dilatant-type flow models proposed by Takahashi [2], and later developed in detail by Iverson and George [3]. The model is used to back-calculate recent debris flow events that occurred near Davos Switzerland in 2018/2019.

 

 

 

REFERENCES

  1. McArdell, B.W., Bartelt, P. and Kowalski, J. (2007): Field observations of basal forces and fluid pore pressure in a debris flow, Geophysical Research Letters, Vol. 34, No. L07406.

 

  1. Takahashi, T. (2007): Debris flows: mechanics, prediction and countermeasures, Taylor and Francis / Balkema, 448pp.

 

  1. George, D. L., & Iverson, R. M. (2011). A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Italian journal of engineering geology and Environment, 43, 415-424.

How to cite: Meyrat, G.: A two-phase dilatant debris flow model based on full scale shear stress and pore pressure measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21752, https://doi.org/10.5194/egusphere-egu2020-21752, 2020