On the computation of phase inconsistencies of Sentinel-1 interferograms over snow-covered areas

Maria Gritsevich1,2,3, Giovanni Nico4,5, Vasco Conde6, Pedro Mateus6, and Joao Catalao6

1Finnish Geospatial Research Institute (FGI), Masala, Finland (maria.gritsevich@helsinki.fi)
2Department of Physics, University of Helsinki, Helsinki, Finland
3Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia
4Institute for Applied Mathematics “Mauro Picone” (IAC), National Research Council of Italy (CNR), Bari, Italy
5Department of Cartography and Geoinformatics, Institute of Earth Sciences, Saint Petersburg State University, St. Petersburg, Russia
6IDL, Faculdade de Ciências, Universidade Lisboa, Lisbon, Portugal

We have recently investigated the use of SAR interferometry for the mapping of Snow Water Equivalent (SWE) temporal variations using Sentinel-1 data \cite{1}. Maps of temporal changes of SWE, measured with a sub-centimetre accuracy and updated every six days have been obtained over a study area in Finland. This methodology relies on the shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer. In this work, we investigate phase inconsistencies \cite{2} of a sets of three interferograms obtained from three Sentinel-1 images acquired along the same orbit at different acquisition times to study the snow melt. We find that while phase inconsistencies are not expected to be present in case of examining surfaces covered with frozen snow, the scattering mechanism of microwave in the snow layer during the melting phase affects both the interferometric phase and coherence.

This work was supported, in part, by the Academy of Finland project no. 325806.

References:

\cite{2} F. De Zan, M. Zonno, P. López-Dekker, Phase inconsistencies and multiple scattering in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6608-6616, 2015