 Ambient seismic noise suppression in COST action G2Net

Velimir Ilić1, Alessandro Bertolini2, Fabio Bonsignorio3, Dario Jozinović4, Tomasz Bulik5, Ivan Štajduhar6,8, Iulian Secrieru7, and Soumen Koley2
1Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
2National Institute for Subatomic Physics, Netherlands
3Heron Robots, Italy
4Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
5Astronomical Observatory, University of Warsaw, Poland
6University of Rijeka, Faculty of Engineering, Croatia
7Institute of Mathematics and Computer Science, Moldova
8University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Croatia

The analysis of low-frequency gravitational waves (GW) data is a crucial mission of GW science and the performance of Earth-based GW detectors is largely influenced by ability of combating the low-frequency ambient seismic noise and other seismic influences. This tasks require multidisciplinary research in the fields of seismic sensing, signal processing, robotics, machine learning and mathematical modeling.

In practice, this kind of research is conducted by large teams of researchers with different expertise, so that project management emerges as an important real life challenge in the projects for acquisition, processing and interpretation of seismic data from GW detector site. A prominent example that successfully deals with this aspect could be observed in the COST Action G2Net (CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning) and its seismic research group, which counts more than 30 members.

In this talk we will review the structure of the group, present the goals and recent activities of the group, and present new methods for combating the seismic influences at GW detector site that will be developed and applied within this collaboration.

This publication is based upon work from CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning, supported by COST (European Cooperation in Science and Technology).