Spontaneous whistler-cyclotron fluctuations of thermal and non-thermal electron distributions.

Pablo S Moya1,2, Daniel Hermosilla2, Rodrigo López1, Marian Lazar1,3, and Stefaan Poedts1

1Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
2Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
3Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Observed particle distributions in space plasmas usually exhibit a variety of non-equilibrium features in the form of temperature anisotropies, suprathermal tails, field-aligned beams, etc. The departure from thermal equilibrium provides a source for spontaneous emissions of electromagnetic fluctuations, such as whistler fluctuations at the electron scales. Analysis of these fluctuations provides relevant information about the plasma state and its macroscopic properties. Here we present a comparative analysis of spontaneous fluctuations in plasmas composed by thermal and non-thermal electron distributions. We compare 1.5D PIC simulations of a finite temperature isotropic magnetized electron-proton plasma modeled with Maxwellian and different kappa velocity distributions. Our results suggest a strong dependence between the shape of the velocity distribution function and the spontaneous magnetic fluctuations wave spectrum. This feature may be used as a proxy to identify the nature of electron populations in space plasmas at locations where direct in-situ measurements of particle fluxes are not available.