Equation of state of the [Fe,Ni]$_3$Si system at conditions relevant to small terrestrial planets

Andrew Jamieson, Lidunka Vočadlo, and Ian Wood
Department of Earth Sciences, University College London

The detailed composition of terrestrial planetary cores is still unknown. The nature of the `light element' alloying with Fe-Ni in planetary cores can affect a large range of properties, such as its melting temperature and the stable crystal structures it exhibits. While geophysical and geodetic parameters of a planet can provide first order information, mineral physics can also be used to investigate the compositional space.

We present ab initio simulations on the [Fe,Ni]$_3$Si system (at ~7wt% and 14wt% Ni) to determine stable crystal structures and thermoelastic properties at PT conditions relevant to smaller terrestrial planets (central pressure <45 GPa). This will allow for comparisons to be made to any future seismic profile of Mars (from InSight or otherwise), and other research on the [Fe,Ni]$_3$[Si,S] system. The overall aim to produce a compositional model for the core of Mars and place it in the context of the evolution of planetary cores, including the state and structure of Mars’ core.