Recent results from scientific ESA Swarm projects

Lorenzo Trenchi1, Jerome Bouffard1, Anja Stromme1, Octav Marghitu2, Kirsti Kauristie3, Adrian Blâgău2, Joachim Vogt4, Balázs Heilig5, and Péter Kovács5

1ESA
2Institute of Space Sciences
3FMI
4Jacobs University
5Mining and Geological Survey of Hungary

This presentation illustrates the recent results obtained in the context of scientific ESA Swarm projects. The project “Swarm data quality Investigation of Field-Aligned Current products, Ionosphere, and Thermosphere system” (SIFACIT) has been recently extended in order to achieve two additional objectives: To provide to users an open-source program package to estimate Field Aligned Current (FAC) density and quality indicators, using single- and multi-s/c methods from Swarm data; To study the Joule heating of the ionosphere–thermosphere system on multiple scales, using Swarm data, together with conjugate ground information and simulations.

The other project illustrated here is EPHEMERIS (nEw sPace weatHER inforMation Exploited from the SwaRm observatIonS). This project is investigating the Midlatitude Ionospheric Trough (MIT) with Swarm data, and will also develop a new MIT Swarm data product based on Swarm L1b Langmuir Probe (LP) data. The second part of the project will develop a quasi-real-time intermittency index (IMI) for the detection of ionosphere plasma irregularities along the Swarm orbit, which can be responsible for errors and loss of lock in GPS signals. A statistical comparison of the IMI index with GPS signal from ground based receivers will be performed, in order to identify the ionospheric irregularities at Swarm altitude responsible for scintillations in GPS signals.