Assessing Water Infiltration and Soil Water Repellency in Brazilian Atlantic Forest Soils

Sergio Esteban Lozano-Baez1, Miguel Cooper2, Silvio Frosini de Barros Ferraz3, Ricardo Ribeiro Rodrigues1, Mirko Castellini4, and Simone Di Prima5

1Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, SP 13418-900, Brazil;
2Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo
3Forest Hydrology Laboratory, "Luiz de Queiroz" College of Agriculture, University of São Paulo
4Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via C. Ulpiani 5, 70125 Bari, Italy;
5Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy

This study presents the results of the soil hydraulic characterization performed under three land covers, namely pasture, 9-year-old restored forest, and remnant forest, in the Brazilian Atlantic Forest. Two types of infiltration tests were performed, namely tension (Mini-Disk Infiltrometer, MDI) and ponding (Beerkan) tests. MDI and Beerkan tests provided a complementary information, highlighting a clear increase of the hydraulic conductivity, especially at the remnant forest plots, when moving from near-saturated to saturated conditions. In addition, measuring the unsaturated soil hydraulic conductivity with different water pressure heads also allowed to estimate the macroscopic capillary length in the field. This approach, in conjunction with Beerkan measurements, allowed to generate better estimates of the saturated soil hydraulic conductivity under challenging field conditions, such as soil water repellency (SWR). This research also reports for the first time evidence of SWR in the Atlantic Forest, which affected the early stage of the infiltration process with more frequency in the remnant forest.