Unraveling South American spatial precipitation patterns, intensity and variability through a multi-proxy approach for the past 2 kyr

Francisco J. Briceño-Zuluaga1, Juliana Nogueira2, Heitor Evangelista2, James Apaéstegui3, Abdelfettah Sifeddine4,5, Jhan Carlo Espinosa3, Raphael Neukom6, Lucien Von Gunten7, Catalina Gonzalez Arango8, Myriam Khodri5, Hugo Leonardo Monteiro2, Alan Prestes9, Mariza Pereira de Souza Echer10, Marie-Pierre Ledru5, Jorge Valdez11, Francisco W. Cruz12, Nicolas Strikis13, and Pedro Dias14

1Faculty of Basic and Applied Sciences, New Granada Military University (UMNG), Bogotá (Colombia)
2Radioecology and climate change laboratory (LARAMG), Department of Biophysics and Biometrics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil)
3Geophysical institute of Peru (Peru)
4LMI PALEOTRACES (IRD-France, UPMC-France, UA-Chile, UFF-Brazil, UPCH-Peru)
5IRD-Sorbonne Universités (UPMC, CNRS-MNHN), LOCEAN, IRD France-Nord, Bondy, (France)
6Oeschger Centre for Climate Change Research & Institute of Geography, University of Bern (Switzerland)
7PAGES International Project Office University of Bern, Main Building (Switzerland)
8Department of Biological Sciences, University of the Andes (Colombia)
9University of Vale do Paraíba – UNIVAP, Paraiba (Brazil)
10National Institute for Space Research (INPE), São José dos Campos (Brazil)
11Marine and Biological Resources Sciences Antofagasta university, Antofagasta (Chile)
12Institute of Geosciences (IGC), University of São Paulo (USP), Sao Paulo (Brazil)
13Environmental Geochemistry Institute, Fluminense Federal University (UFF), Rio de Janeiro (Brazil)
14Department of Atmospheric Sciences (São Paulo), University of Sao Paulo (USP), Sao Paulo (Brazil)

South America hydrological cycle is highly dependent on the water vapor transport advected from tropical-equatorial Atlantic, Southern Pacific as well as the polar advections. While the Pacific contribution in the continental water budget is basically restricted to the western Andes region, the Atlantic Ocean and others mechanism – as advection in Amazonas basin – play a great role in modulating precipitation over the continent. Besides, modes of climatic variability, such as ENSO, have an important role in pluviosity distribution patterns and respectively intensity, influencing the availability of water resources from mountainous regions, vital to ecosystems and to economy and human wellbeing. Intense droughts and floods observed continentally during the modern epoch have pointed to the need of better understanding the regional climate related issue. Recent paleoclimate advances, especially the creation of high-standard regional proxy record databases, allow describing the South American climate from a new perspective. Here we present an effort of the South American PAGES 2k paleo-community LOTRED-SA to build a South America hydrology robust and unique multiproxy database. We present a spatial and temporal approach of the South American hydro-climate reconstruction based on more than 360 available databases in an attempt
to unravel their changes and impacts. Following a multi-proxy approach, we expect to better describe duration and location of wet and dryer climate regimes at most important climate spatial domains, and modes patterns on South America, during each period; as well as their predominant variability base on high resolution records (tree rings, speleothems, lake, marine and ice cores), we combine here the use of different proxy records and spatial-temporal approach, owing to consolidate interpretations of the hydrological cycles in South America.