Nd, Sr and stable isotope signatures of ancient methane-seep carbonates (Eocene, Washington, USA) as a record of incipient subduction at the Cascadia convergent margin

Michał Jakubowicz¹, Steffen Kiel², James Goedert³, Jolanta Dopieralska⁴, and Zdzislaw Belka¹

¹Isotope Laboratory, Adam Mickiewicz University, Poznań, Poland (mjakub@amu.edu.pl)
²Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden (Steffen.Kiel@nrm.se)
³Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA (jgoedert@u.washington.edu)
⁴Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland (dopieralska@amu.edu.pl)

Stratigraphic and structural context of the early evolution of the Cascadia convergent margin, following major subduction reconfiguration associated with accretion of the igneous Siletzia terrane at 50−45 Ma, remains insufficiently understood. Here, we have applied a novel approach that uses combined Nd, Sr and stable isotope analyses of ancient methane-seep carbonates to constrain the early hydrogeological regime of the Cascadia margin. Analyses included the oldest-known seep deposits of Cascadia, formed during mid-Eocene time (42.5−40.5 Ma). A combination of exceptionally high ε^{143}Nd and low 87Sr/86Sr signatures observed in these carbonates consistently point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement. Moderately negative δ^{13}C$_{carbonate}$ values imply thermogenic origin of hydrocarbons at three out of four studied seeps, with likely contribution of biogenic methane at a single, landward-most site. When combined with structural constraints, the recorded signals point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement. Moderately negative δ^{13}C$_{carbonate}$ values imply thermogenic origin of hydrocarbons at three out of four studied seeps, with likely contribution of biogenic methane at a single, landward-most site. When combined with structural constraints, the recorded signals point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement.