What can Hall-MHD simulations tell us about the transition region in the solar wind proton density spectrum?

Victor Montagud-Camps1, František Němec1, Jana Šafránková1, Zdeněk Němeček1, Roland Grappin2, Andrea Verdini3, and Alexander Pitňa1

1Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Prague, Czechia (victor@aurora.troja.mff.cuni.cz)
2LPP, Ecole Polytechnique, Palaiseau, France
3Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italia

Similarly to the power density spectrum of magnetic field fluctuations in the solar wind, the spectrum of density fluctuations also shows multiple spectral slopes. Both of them present a spectral index varying between \(-3/2\) and \(-5/3\) in the inertial range and close to \(-2.8\) between the proton and electron gyrofrequencies.

Despite these similarities, the spectrum of density fluctuations has a significant difference with respect to the magnetic and velocity fluctuations spectra: it shows a transition region between the inertial and the kinetic ranges with spectral index typically around \(-1\).

We have combined the results of compressible Hall-MHD numerical simulations and measurements of the BMSW instrument onboard Spektr-R satellite to study the possible causes of the flattening in the density spectrum. Both numerical and experimental approaches point towards an important role played by Kinetic Alfvén Waves.