Spatial variability in biomass burning in the northern extratropics since the Last Glacial Maximum

David Kesner1,2, Sandy Harrison1,2, Tatiana Blyakharchuk3, Mary Edwards4, Michelle Garneau5, Gabriel Magnan5, and Colin Prentice6

1Department of Geography and Environmental Science, University of Reading, United Kingdom
2Leverhulme Centre for Wildfires, Environment and Society, United Kingdom
3Tomsk State University Department of Botany, Lenina 36, 634050 Tomsk, Russia
4Geography and Environmental Science, University of Southampton, United Kingdom
5GEOTOP Research Center, Université du Québec à Montréal
6Department of Life Sciences, Imperial College London, United Kingdom

Fire is an important environmental and ecological process in northern high latitude environments. It is currently unclear how fire regimes will change in response to current environmental change in this region and the implications this may have for ecosystem processes and human societies. We reconstruct changes in biomass burning since the Last Glacial Maximum in the northern extratropics (>45°N), using data from the Global Charcoal Database complemented by new records from Canada, Beringia and Russia. A clustering machine-learning algorithm (K-means) is used to delimit regions that show similar burning histories. Comparison of the regional trajectories of change in biomass burning provides insights into the environmental drivers of fire. Generalised linear modelling is then used to explore the independent roles of climate, vegetation changes and human activities on changes in fire regimes for each region and for the northern extratropics as a whole. This study provides quantitative information about the differential importance of the drivers of changes in fire regimes in different regions and at different timescales since the Last Glacial Maximum, and provides insights about how these may influence future fire regimes across this region.