Relations of velocity and magnetic field fluctuations in the minimum variance frames

Jana Šafránková¹, Zdeněk Němeček¹, František Němec¹, Daniel Verscharen²,³, Tereza Ďurovcová¹, and Alexander Pitňa¹

¹Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Prague 8, Czechia (jana.safrankova@mff.cuni.cz)
²Mullard Space Science Laboratory, University College London, UK
³Space Science Center, University of New Hampshire, Durham, NH 03824, USA

The analysis of magnetic field and velocity fluctuations in corresponding minimum variance frames revealed that: (1) Minimum variance and mean magnetic field directions would be similar but these two directions are often perpendicular, especially in the high-beta environment, and a number of perpendicular cases decreases with the scale length; (2) Compressibility computed in the minimum variance frame generally increases with frequency but the increase is not monotonic; it exhibits two breaks observed for the magnetic field as well as for velocity fluctuations with approximately the same break frequencies. (3) We suggest that the first break can be connected with a change of pure Alfvén to kinetic Alfvén modes and the second break approximately coincides with the transition from the inertial to kinetic scales.