EGU2020-2755
https://doi.org/10.5194/egusphere-egu2020-2755
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Teleconnection patterns in the Southern Hemisphere in subseasonal to seasonal models hindcasts and influences on South America

Iracema Cavalcanti and Naurinete Barreto
Iracema Cavalcanti and Naurinete Barreto
  • National Institute for Space Research, Center for Weather Forecasting and Climate Studies, São José dos Campos, Brazil (iracema@cptec.inpe.br)

The main atmospheric teleconnection patterns in the Southern Hemisphere are the Southern Annular Mode (SAM) and the Pacific South American (PSA). The SAM has opposite atmospheric anomalies between high and middle latitudes and it is linked with the polar vortex intensity and jet streams. PSA shows a wavetrain pattern from tropical to the extratropical atmosphere over the South Pacific Ocean triggered by convection in the tropical Indian, Maritime Continent and tropical Pacific. These modes modulate the atmospheric circulation variability and have an influence on the precipitation over Southern Hemisphere continents, mainly in South America (SA). Global models are able to represent these modes in climate simulations of seasonal timescale. The objective of this study is to analyse these teleconnections in hindcasts of subseasonal timescale and the relations to precipitation anomalies over South America. Predictions in the subseasonal time scale of austral summer are very important for several sectors of Southeastern and Southern regions of SA, as these are very populated regions and have agriculture and the largest hydropower,  which are very much affected by precipitation extremes, both excess and lack of rain. Two models of the S2S project (ECMWF and NCEP) are used for the summer seasons of 1999 to 2011 and the patterns are compared to ERA5 reanalyses and GPCP data. EOF analyses of geopotential at 200 hPa and regression analyses against precipitation show the patterns and the influences over South America. The SAM pattern is represented in predictions of 1 to 4 weeks in advance, and PSA pattern, from 1 to 3 weeks in advance. Then, the atmospheric circulation and meteorological variables composites of extreme positive and negative amplitudes of SAM and PSA are analysed to interpret precipitation anomalies during these specific periods for predictions of weeks 2 and 3.

How to cite: Cavalcanti, I. and Barreto, N.: Teleconnection patterns in the Southern Hemisphere in subseasonal to seasonal models hindcasts and influences on South America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2755, https://doi.org/10.5194/egusphere-egu2020-2755, 2020

Displays

Display file