A coupled watershed-biogeochemical model to simulate dissolved and particulate 137Cs discharge from a forested catchment affected by the Fukushima accident

Kazuyuki Sakuma1, Kazuya Yoshimura2, Hiroshi Kurikami3, Alex Malins4, and Hironori Funaki5

1Japan Atomic Energy Agency, Kashiwa, Japan (sakuma.kazuyuki@jaea.go.jp)
2Japan Atomic Energy Agency, Minamisoma, Japan (yoshimura.kazuya@jaea.go.jp)
3Japan Atomic Energy Agency, Miharu, Japan (kurikami.hiroshi@jaea.go.jp)
4Japan Atomic Energy Agency, Kashiwa, Japan (malins.alex@jaea.go.jp)
5Japan Atomic Energy Agency, Minamisoma, Japan (funaki.hironori@jaea.go.jp)

Dissolved 137Cs discharge represents approximately 30% of the total 137Cs discharge from the forested upstream catchment of the Ohta River in Fukushima, Japan [1]. It is thought that a major source of the dissolved 137Cs entering the river water may be leaching from forest litter [1]. A watershed simulation based on the distribution coefficient (K_d) that modelled water, sediment, and particulate and dissolved 137Cs transport could not reproduce the seasonal variability of the base flow dissolved 137Cs concentrations, nor the peaks in concentration that occurred during storms [2].

We developed a combined watershed-biogeochemistry model for simulating dissolved and particulate 137Cs discharge from forest catchments to describe the two phenomenon as mentioned above. A compartment model for the forest ecosystem was appended to the General-purpose Terrestrial fluid-Flow Simulator (GETFLOWS) watershed code. The compartment model included compartments for undecomposed and decomposed litter, with transfer from the former into the latter depending on temperature. A pathway for dissolved 137Cs input to forest streams was linked from the decomposed litter compartment.

The results from a simulation with the new simulation model reproduced the seasonal variability of dissolved 137Cs concentrations and the peaks occurring during storms. Therefore the new modelling results add weight to the theory that leaching from decomposed litter can input dissolved 137Cs concentrations in river water in Fukushima Prefecture. The developed model is expected to be useful for further explorations into factors affecting dissolved 137Cs input to river water in forested catchments.
