Combined clumped isotope measurements resolve kinetic biases in carbonate formation temperatures

David Bajnai1,2, Weifu Guo3, Niklas Löffler1,4, Katharina Methner4, Emilija Krsnik4, Tyler B. Coplen5, Eberhard Gischler1, Maximilian Hansen6, Daniela Henkel7, Gregory D. Price8, Jacek Raddatz1, Denis Scholz6, and Jens Fiebig1

1Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
2Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
3Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
4Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
5U.S. Geological Survey, Reston, VA, USA
6Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany
7GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
8School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK

Reaction kinetics involved in the precipitation of carbonates can introduce large scatter and inaccuracies in the temperatures derived from their $\delta^{18}\text{O}$ and Δ_{47} values. Advances in mass spectrometry instrumentation recently enabled high-precision analysis of the ^{18}O–^{18}O clumping in carbonate minerals (Δ_{48}), despite the relatively low natural abundance of $^{12}\text{C}^{18}\text{O}^{18}\text{O}$, the main isotopologue contributing to the Δ_{48} signal \cite{1}. Measurements of Δ_{48}, when combined with Δ_{47}, can yield additional insights into kinetic effects and the carbonate formation environment \cite{2}.

Here we report high-precision Δ_{47} and Δ_{48} values of speleothem carbonates, modern coral skeletons, a brachiopod, and a belemnite. We constrained equilibrium in Δ_{47} vs Δ_{48} space by anchoring empirically derived Δ_{47} vs temperature and Δ_{48} vs temperature relationships to a Devils Hole mammillary calcite, known to be precipitated at extremely slow rates at a constant 33.7(\pm0.8) °C and water oxygen isotope composition. Our results, compared to theoretical predictions, provide the most substantial evidence to date that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Data from an ancient belemnite imply it precipitated near isotopic equilibrium and confirm the warmer-than-present temperatures at Early Cretaceous southern latitudes. The presence of similar kinetic departure in a brachiopod but not in a belemnite suggests that the current discrepancy between belemnite and brachiopod-based temperature estimates in the geologic record is most likely related to a greater kinetic bias in the isotopic composition of brachiopod shells.

We demonstrate that the combined clumped isotope method makes it possible to identify carbonates that did not precipitate in thermodynamic equilibrium from their parent water. Our results highlight the potential that the combined clumped isotope analyses hold for accurate
paleoclimate reconstructions and the identification of the kinetic fractionation processes dominant in carbonate (bio)mineralisation.

(1) Fiebig et al. (2019), https://doi.org/10.1016/j.chemgeo.2019.05.019