K-cymrite as Redox Insensitive Transporter of Nitrogen in the Mantle

Alexander Sokol, Igor Kupriyanov, Yurii Seryotkin, and Ella Sokol
V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation (sokola@igm.nsc.ru)

The current flux of nitrogen into the mantle in subduction zones is about three times its amount outgassing at mid-ocean ridges, arc and intraplate volcanoes, i.e., some efficient nitrogen hosts and carriers should exist in slabs. The $K^+ \rightarrow (NH_4^+)$ substitution in silicate minerals is possible only within limited redox-favorable parts of slabs. Whether nitrogen can be transported and immobilized in the mantle as part of solids by some redox-independent mechanisms? The experimental study of the muscovite-NH$_3$-N$_2$-H$_2$O and eclogite+muscovite-NH$_3$-N$_2$-H$_2$O systems at 6.3-7.8 GPa and 1000 to 1200°C shows that NH$_3$- and N$_2$-rich K-cymrite can be stable in metapelite and act as a redox insensitive carrier of nitrogen to mantle depths >200 km in downgoing slabs. This ability is related to its unique clathrate structure that can accommodate three species of nitrogen: N$_2$ and NH$_3$ molecules in cages and (NH$_4^+$) substituting for K$^+$, while imprisoned N$_2$ and NH$_3$ were first discovered in cages of ultra-high pressure minerals. The storage capacity K-cymrite with respect to nitrogen increases from 2.9 to 6.3 wt.% with increase of fO$_2$ from ~IW to ~NNO, at the N$_2$/(NH_3+N$_2$) ratio in fluid from 0.1 to 0.9. Comparison of equilibrated muscovite and K-cymrite synthesized at 7.8 GPa, 1070°C, and fO$_2$ ~IW demonstrates that the clathrate mechanism of nitrogen entrapment by aluminosilicates (in the form of N$_2$ and NH$_3$ molecules) is much more efficient than the K$^+ \rightarrow (NH_4^+)$ substitution even in strongly reduced conditions. The presence of an N-bearing fluid in the studied systems stabilizes the K-cymrite structure. Muscovite does not convert to K-cymrite in the absence of NH$_3$-N$_2$-bearing fluid within 7.8 GPa and 1070-1120°C. Our estimates of normalized volume per non-hydrogen atom show that N$_2$-bearing cymrite is the densest in the series of K-cymrite with cages filled to different degrees: $K\text{Cym}_{NH_3} > K\text{Cym}_{H_2O} > K\text{Cym}_{N_2}$ and is thus the most stable among cymrite-type compounds under high pressure.

The research was performed by a grant of the Russian Science Foundation (16-17-10041).