Modern agriculture, in response to the constantly increasing need of high crop production, requires application of high levels of N and P fertilizers to soil. These substances are mainly composed by nutrients such as NH_4^+ and PO_4^{3-} and are often applied in strong excess in order to assure high crop yield. The nutrients applied through fertilizers and not exploited by crops (estimated on average around 50%) can considerably impair environmental quality through nitrogen losses in atmosphere ($\text{N}_2\text{O}, \text{NO}_x, \text{NH}_3$) and eutrophication of water bodies.

In this work, a new method for reducing NH_4^+ and PO_4^{3-} in swine wastewaters (commonly used as organic fertilizer) was studied. The aim is to reduce their environmental impact and concomitantly create a new slow-release fertilizer.

Two techniques have been combined: the induced MAP precipitation (magnesium ammonium phosphate) and natural zeolite ammonium adsorption for removing the NH_4^+ excess that generally remains in solution after MAP precipitation. Given the complexity of working with real wastewaters, in this preliminary phase a synthetic analogue was used in order to better evaluate the efficiency of this method. Two synthetic wastewaters with different $\text{Mg}^{2+} : \text{NH}_4^+ : \text{PO}_4^{3-}$ molar ratio were tested: MR1 (1:1:5:1) and MR2 (2:1:1), which according to the literature give the best reductions of NH_4^+ and PO_4^{3-}. Since swine wastewater are naturally rich of both NH_4^+ and K^+, isotherm studies were conducted on natural zeolites for evaluating their adsorption capacity of
\(\text{NH}_4^+ \) under different levels of \(K^+ \) competition. Results showed that the potential in \(\text{NH}_4^+ \) adsorption decreased while competition with \(K^+ \) increased. The combination of MAP precipitation and \(\text{NH}_4^+ \) adsorption by natural zeolite has been tested in 2 ways: 1) zeolite was added before inducing MAP precipitation 2) zeolite was added after inducing MAP precipitation. These two treatments were compared to a blank in which only MAP precipitation technique was used.

The amount of \(\text{NH}_4^+ \) and \(\text{PO}_4^{3-} \) was monitored in various steps during the experiments as well as SEM observations were conducted on precipitated obtained. Results showed that adding zeolites before MAP precipitation induce a variation in the \(\text{Mg}^{2+} : \text{NH}_4^+ : \text{PO}_4^{3-} \) ratio due to cation exchange processes before MAP precipitation which introduce interfering ions such as \(\text{Ca}^{2+} \) favoring calcium phosphates precipitation instead of MAP. The best test conditions, which produced the 75.1% of \(\text{NH}_4^+ \) and 99.9% of \(\text{PO}_4^{3-} \) reductions, occurred when zeolites have been added after MAP precipitation using the MR2. This new material obtained combines good N and P concentration and have therefore potentialities to be a high-quality slow-release fertilizer.