Assessing the seismic hazards associated with one of the largest active thrust sheets: the case of the slowly deforming Western Kunlun mountain range (Xinjiang, China).

Martine Simoes1, Christelle Guilbaud1, Jerome van der Woerd2, Laurie Barrier1, Roxane Tissandier1, Haibing Li3, Jean-Mathieu Nocquet1,4, Jiawei Pan3, Guillaume Baby1, Jialiang Si3, and Paul Tapponnier1,5

1Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
2Université de Strasbourg, CNRS, Institut de Physique du Globe de Strasbourg UMR 7516, F-67000, Strasbourg, France. (3) Institute of Geology, Chinese Academy of Geological Science, Beijing, China.
3Institute of Geology, China Earthquake Administration, Beijing, China.
4GeoAzur, IRD, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Valbonne, France.
5Institute of Crustal Dynamics, China Earthquake Administration, Beijing, China.

The Western Kunlun Range (WKR) is a slowly converging orogen located along the northwestern edge of the Tibetan Plateau, facing the Tarim Basin. The recent Mw 6.4 2015 Pishan earthquake along the mountain front recalls that this region remains seismically active, despite little or moderate historical seismicity. Its low deformation rates can be hardly retrieved from current geodetic data, placing limited constraints on the potential interseismic loading of the region. This is particularly critical as recent structural investigations report the existence of an extremely wide (~150-180 km) frontal thrust sheet, whose dimensions would imply the possibility of major M ≥ 8 earthquakes in the case that it is locked and slips during one single seismic event.

To place further constraints on the seismic hazards of this region, we have conducted morphological and structural analyses of active faults to unravel the geomorphic record of active deformation cumulated other multiple seismic events at specific sites. To do so, field observations, seismic profiles and high-resolution Pléiades images and DEMs were combined together with the dating of fluvial terraces. We find that shortening rates have been of 0.5-2.5 mm/yr, with most probable values of ~2 mm/yr over the last ~300-500 kyr. Our detailed morphological investigations further indicate that this shortening is variably partitioned on one or several blind ramps along the mountain front, and from there is transmitted forward all the way to the deformation front, ~150-180 km further north. As such, this extremely wide single frontal thrust sheet stands most probably as the largest active thrust sheet in the world!

Finally, previously published GPS velocity fields highlight a 2-3 mm/yr gradient in horizontal velocities across the WKR and southern Tarim basin when combined and expressed in a stable Tarim reference. Such gradient, unseen from previous analyses, is consistent with our morphological results on shortening rates. Most importantly, this spatial gradient in velocities may
suggest that the frontal thrust sheet is presently partly locked, questioning the possibility of mega-earthquakes in the region.

How to cite: Simoes, M., Guilbaud, C., van der Woerd, J., Barrier, L., Tissandier, R., Li, H., Nocquet, J.-M., Pan, J., Baby, G., Si, J., and Tapponnier, P.: Assessing the seismic hazards associated with one of the largest active thrust sheets: the case of the slowly deforming Western Kunlun mountain range (Xinjiang, China)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3678, https://doi.org/10.5194/egusphere-egu2020-3678, 2020