Energy Conversion in the Electron Stagnation Region of Magnetopause Reconnection

James Burch1, James Webster2, Kristina Pritchard1,3, Kevin Genestreti1, Michael Hesse4, Paul Cassak5, Roy Torbert1,6, Barbara Giles7, Robert Ergun8, Christopher Russell9, Robert Strangeway9, Kyoung-Joo Hwang1, Kyunghwan Dokgo1, and Stephen Fuselier1

1Southwest Research Institute, San Antonio, TX, USA (jburch@swri.edu, kevin.genestreti@swri.edu, joo.hwang@swri.org, kyunghwan.dokgo@swri.org, rtorbert@swri.edu, kristina.pritchard@contractor.swri)
2Rice University, Houston, TX, USA (jmw11@rice.edu)
3University of Texas, San Antonio, TX, USA (kristina.pritchard@contractor.swri)
4University of Bergen, Bergen, Norway (Michael.Hesse@uib.no)
5West Virginia University, Morgantown, WV, USA (Paul.Cassak@mail.wvu.edu)
6University of New Hampshire, Durham, NH, USA (Roy.Torbert@unh.edu)
7NASA Goddard Space Flight Center, Greenbelt, MD, USA (barbara.giles@nasa.gov)
8University of Colorado, LASP, Boulder, CO, USA (ree@lasp.colorado.edu)
9University of California, Los Angeles, Los Angeles, CA, USA (ctrussel@igpp.ucla.edu, strangeway@igpp.ucla.edu)

For reconnection at the Earth’s day side, which is asymmetric, the main energy conversion occurs on closed field lines in the electron stagnation region. Energy conversion, as measured by $J\mathbf{E}$, occurs where out-of-plane electric field components are embedded within larger regions of out-of-plane current, which is carried by strong electron flows in the M direction of the LMN coordinate system. Bracketing these energy conversion sites are electron jet reversals (along L and -L) and converging electron flows (along N and -N). These electron flows are like those that surround reconnection X lines, however, in these cases they occur completely within closed field lines. The question then is what, if anything, this energy conversion has to do with local reconnection of magnetic field lines. This paper reports on a study of two events observed by MMS on December 29, 2016 and April 15, 2018. The electron inflows have velocities between $0.05 V_{ea}$ and $0.1 V_{ea}$ (V_{ea} = electron Alfvén speed), which are consistent with predicted reconnection rates. Laboratory measurements and 3D simulation results offer some clues about how reconnecting current sheets can evolve in a uniform background magnetic field.