Stalagmite geochemical proxy-inferred precipitation records over the past 800 years in northern Italy

C.-C. (River) Shen1,2, Hsun-Ming Hu1,2, Véronique Michel3,4, Patricia Valensi5, Horng-Sheng Mii6, Christoph Spötl7, Elisabetta Starnini8, Marta Zunino9, Takaaki Watanabe10, Tsuyoshi Watanabe10, Hsien-Chen Tsai1,2, Wen-Hui Sung1,2, and Wei-Yi Chien1,2

1High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei, Taiwan (river@ntu.edu.tw)
2Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
3Université Côte d’Azur, CNRS, CEPAM, Nice, France
4Université Côte d’Azur, CNRS, OCA, IRD, Géoaizur, Valbonne, France
5Sorbonne Universités, MNHN, CNRS, UPMC, UPVD, Paris, France; Musée de Préhistoire, Tourrette-Levens, France
6Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
7Institute of Geology, University of Innsbruck, Innsbruck, Austria
8Archaeological Superintendency of Liguria, Via Balbi 10, Genova, Italy
9Toirano Cave, Piazzale D. Maineri 1, Toirano, Italy
10Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan

We here present new 230Th-dated stalagmite multi-proxy records from Toirano cave (44° N, 8° E), northern Italy, characterized by a semi-arid Mediterranean climate with humid winters and dry summers. Eleven U-Th ages was used to build the regional hydroclimate evolution over the past 800 years. Sr/Ca and Ba/Ca records show a similar pattern with an increasing trend at the end of Medieval Warm Period (MWP; 950-1250 C.E.) and a decreasing trend at the inception of Little Ice Age (LIA; 1300 to 1800 C.E.). The temperature effect on the Sr partition coefficient in calcite is negligible and no significant influence of deposition rate on Sr/Ca and Ba/Ca is observed. The high degree of co-variation between the two records (r = 0.91; n = 212) suggest the variation should be mainly governed by prior calcite precipitation (PCP). Dry conditions lead to a longer water residence time in the epikarst, enhanced CO\textsubscript{2} degassing and decreasing drip rate, resulting in high Sr/Ca and Ba/Ca ratios due to the preferential removal of Ca during PCP. Our results suggest a dry period during the transition of MCA and LIA in our region.