EGU2020-4068, updated on 08 Jan 2024
https://doi.org/10.5194/egusphere-egu2020-4068
EGU General Assembly 2020
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

3D Mapping of Rock Formations from Oblique and Nadir Viewing UAV Imagery

Kasper Johansen, Yu-Hsuan Tu, Matteo Ziliani, Bruno Aragon, Yoseline Angel, Bonny Stutsel, Samir Al-Mashharawi, Oliver Lopez, and Matthew McCabe
Kasper Johansen et al.
  • King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering, Thuwal, Saudi Arabia (kasper.johansen@kaust.edu.sa)

Detailed information on rock formations and assessment of their geological structures, such as joints, faults, shears and bedding planes, are required for evaluation of rock integrity and stability. Our research demonstrates a comprehensive approach for producing high spatial resolution 3D information of rock formations from unmanned aerial vehicle (UAV) imagery for rock joint identification, and presents an innovative technique for using Terrestrial Laser Scanning (TLS) data to derive ground control points (GCPs) for geo-referencing of UAV imagery of vertical rock walls. UAV imagery was collected from a freestanding 90 m tall rock formation with a 3.5 km perimeter, via oblique rock façade scans and also at-nadir, covering a ground and rock facade area of approximately 0.32 and 0.25 km2, respectively. Seventy-two GCPs were distributed around the rock for geo-referencing of the UAV imagery. As GCPs could not be deployed on vertical rock walls, a TLS system was used for identification of 93 distinct natural features as pseudo-GCPs on the rock walls. Forty scans were collected and geo-referenced from triplets of GCPs placed on the ground near the TLS system for each scan. A Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) survey was performed on the GCPs, using a base station and a rover. Continuously Operating Reference Stations (CORS) data were used to fix the position of the base station and improve the absolute geometric position to an average and lowest accuracy of 3.3 and 18.6 mm for 177 GCPs. A total of 44 façade scans, as well as 14 low and 5 high altitude nadir-viewing UAV flights, were undertaken with a Zenmuse X3 RGB camera mounted to a DJI Matrice 100 platform, resulting in a collection of nearly 17,000 photos. The five high altitude flights were designed to include a larger area around the rock to incorporate additional GCPs, while the low altitude flights were to increase the spatial resolution of the imaged rock. Flight planning was undertaken with the Universal Ground Control Station Client application. Façade scans were flown horizontally and parallel to the rock walls at a distance of 20-30 m and at heights between 10-80 m with sidelaps >70% between horizontal flight lines and >80% forward overlap along flight lines. Façade scans were collected with a 4° viewing angle to ensure the base of the rock was included. The Agisoft MetaShape software was initially used to generate a sparse point cloud using all façade scans and nadir-viewing imagery. Geo-referencing of the UAV imagery was based on 136 GCPs, which produced an accuracy of 0.1558 m, with an addition 100 control points kept aside for independent evaluation, yielding an accuracy of 0.2018 m. Subsequent image processing was split into 14 evenly sized “chunks” to enable more efficient processing of a dense point cloud (4.33 billion points) and 3D model (mesh with 129.5 million faces and texture layer) for the entire area. The produced 3D model was found suitable for identification of rock joints larger than 1 m in length.

How to cite: Johansen, K., Tu, Y.-H., Ziliani, M., Aragon, B., Angel, Y., Stutsel, B., Al-Mashharawi, S., Lopez, O., and McCabe, M.: 3D Mapping of Rock Formations from Oblique and Nadir Viewing UAV Imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4068, https://doi.org/10.5194/egusphere-egu2020-4068, 2020.

This abstract will not be presented.