Toba volcano super eruption destroyed the ozone layer and caused a human population bottleneck

Sergey Osipov¹, Georgiy Stenchikov², Kostas Tsigaridis³,⁴, Allegra LeGrande³,⁴, Susanne Bauer³,⁴, Mohamed Fnais⁵, and Jos Lelieveld¹

¹Max Planck Institute for Chemistry, Mainz, Germany (sergey.osipov@mpic.de)
²King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
³Center for Climate Systems Research, Columbia University, New York, USA
⁴NASA Goddard Institute for Space Studies, New York, USA
⁵King Saud University, College of Science, Riyadh, Saudi Arabia

Volcanic eruptions trigger a broad spectrum of climatic responses. For example, the Mount Pinatubo eruption in 1991 forced an El Niño and global cooling, and the Tambora eruption in 1815 caused the "Year Without a Summer." Especially grand eruptions such as Toba around 74,000 years ago can push the Earth's climate into a volcanic winter state, significantly lowering the surface temperature and precipitation globally. Here we present a new, previously overlooked element of the volcanic effects spectrum: the radiative mechanism of stratospheric ozone depletion. We found that the volcanic plume of Toba enhanced the UV optical depth and suppressed the primary formation of stratospheric ozone from O₂ photolysis. Sulfate aerosols additionally reflect the photons needed to break the O₂ bond (λ < 242 nm), otherwise controlled by ozone absorption and Rayleigh scattering alone during volcanically quiescent conditions. Our NASA GISS ModelE simulations of the Toba eruption reveal up to 50% global ozone loss due to the overall photochemistry perturbations of the sulfate aerosols. We also consider and quantify the radiative effects of SO₂, which partially compensated for the ozone loss by inhibiting the photolytic O₃ sink.

Our analysis shows that the magnitude of the ozone loss and UV-induced health-hazardous effects after the Toba eruption are similar to those in the aftermath of a potential nuclear conflict. These findings suggest a "Toba ozone catastrophe" as a likely contributor to the historic population decline in this period, consistent with a genetic bottleneck in human evolution.