The Effects of Hyperbolic Meteoroids from Parker Solar Probe to the Moon

Jamey Szalay1, Petr Pokorny2,3, Mihaly Horanyi4,5,6, Stuart Bale7,8, Eric Christian2, Keith Goetz9, Katherine Goodrich7,8, Matthew Hill10, Marc Kuchner2, Rhiannon Larsen11, David Malaspina2, David McComas1, Donald Mitchell10, Brent Page7,8, and Nathan Schwadron12

1Princeton University
2NASA Goddard Spaceflight Center
3The Catholic University of America
4University of Colorado Boulder
5Laboratory for Atmospheric and Space Physics
6Institute for Modeling Plasma, Atmospheres, and Cosmic Dust
7Space Sciences Laboratory
8University of California, Berkeley
9University of Minnesota
10Johns Hopkins University Applied Physics Laboratory
11Red Rocks Community College
12University of New Hampshire, Durham

The zodiacal cloud in the inner solar system undergoes continual evolution, as its dust grains are collisionally ground and sublimated into smaller and smaller sizes. Sufficiently small (~<500 nm) grains known as beta-meteoroids are ejected from the inner solar system on hyperbolic orbits under the influence of solar radiation pressure. These small grains can reach significantly larger speeds than those in the nominal zodiacal cloud and impact the surfaces of airless bodies. Since the discovery of the Moon's asymmetric ejecta cloud, the origin of its sunward-canted density enhancement has not been well understood. We propose impact ejecta from beta-meteoroids that hit the Moon's sunward side could explain this unresolved asymmetry. The proposed hypothesis rests on the fact that beta-meteoroids are one of the few truly asymmetric meteoroid sources in the solar system, as unbound grains always travel away from the Sun and lack a symmetric inbound counterpart. This finding suggests beta-meteoroids may also contribute to the evolution of other airless surfaces in the inner solar system as well as within other exo-zodiacal disks. We will also highlight recent observations from the Parker Solar Probe (PSP) spacecraft, which suggest it is being bombarded by the very same beta-meteoroids. We discuss how observations by PSP, which lacks a dedicated dust detector, can be used to inform the structure and variability of beta-meteoroids in the inner solar system closer to the Sun than ever before.

How to cite: Szalay, J., Pokorny, P., Horanyi, M., Bale, S., Christian, E., Goetz, K., Goodrich, K., Hill,