UAV- and SfM-related techniques applied to volcano-tectonics for virtual outcrops construction and geoscience communication. Examples from the North Volcanic Zone, Iceland

Federico Pasquaré Mariotto and Alessandro Tibaldi
Insubria University, Human and Innovation Sciences, Italy (pas.mariotto@uninsubria.it)

UAV- and SfM-related techniques applied to volcano-tectonics for virtual outcrops construction and geoscience communication. Examples from the North Volcanic Zone, Iceland

Authors: Federico Pasquaré Mariotto¹, Alessandro Tibaldi²,³

¹Insubria University, Department of Human and Innovation Sciences ²University of Milan-Bicocca, Department of Earth and Environmental Science, Milan, Italy ³CRUST-Interuniversity Center for 3D Seismotectonics with Territorial Applications, Italy

Iceland offers an unparalleled chance to observe the most powerful natural phenomena related to the combination of tectonic and magmatic forces, such as active rifting, volcanic eruptions, sub-volcanic intrusions. We have focused on a number of geosites which are found in the Northern Volcanic Zone (NVZ) of Iceland; here, the following volcano-tectonic features can be observed: i) the Theystareykir Fissure Swarm (ThFS), an active rift system with a central volcano, several major faults and numerous eruptive fissures; ii) the Krafla Fissure Swarm (KFS), another major rift system marked by the presence of monogenic cones, dip-slip faults, eruptive fissures, extension fractures and the active Krafla volcano.

In order to showcase a few, outstanding examples of the above, we have made use of UAVs integrated by the Structure-from-Motion (SfM) Photogrammetry. As is well known, the combination of UAV-digital image collection and SfM techniques has been increasingly applied to geological and environmental research. We have applied this approach to the collection of high-definition images and with the purpose of constructing 3-D models, which may be considered “Virtual Outcrops (VO)”.

We highlight that such 3-D models can be navigated in immersive Virtual Reality mode, and hence can be a key tool not only for research purposes: in fact, this is a novel, cutting-edge approach which is suitable for improving geosite popularization and geoscience communication, allowing for
the engagement of a wider audience, including potential end-users from the younger generation.