Solar and Interplanetary Turbulence: Lagrangian Coherent Structures

Abraham C.L. Chian,1,2,3 Luis R. Bellot Rubio4, Heng Q. Feng5, Tiago F. P. Gomes2, Milan Gasic6, Daniela Grasso7, Qiang Hu8, Kanya Kusano3, Rodrigo A. Miranda9, Pablo R. Munoz10, Erico L. Rempel12,11, David Ruffolo12, Suzana S. A. Silva11, and De J. Wu13

1University of Adelaide, School of Mathematical Sciences, Adelaide, Australia (abraham.chian@gmail.com)
2National Institute for Space Research, Sao Jose dos Campos, Brazil
3ISEE, Nagoya University, Japan
4Institute of Astrophysics of Andalucia, Granada, Spain
5Luoyang Normal University, Luoyang, China
6Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, USA
7ISC-CNR and Politecnico di Torino, Torino, Italy
8University of Alabama in Huntsville, Huntsville, USA
9University of Brasilia, Brasilia, Brazil
10University of La Serena, La Serena, Chile
11Institute of Aeronautical Technology, Sao Jose dos Campos, Brazil
12Mahidol University, Bangkok, Thailand
13Purple Mountain Observatory, Nanjing, China

The dynamics of solar and interplanetary plasmas is governed by coherent structures such as current sheets and magnetic flux ropes which are responsible for the genesis of intermittent turbulence via magnetic reconnections in solar supergranular junctions, solar coronal loops, the shock-sheath region of an interplanetary coronal mass ejection, and the interface region of two interplanetary magnetic flux ropes. Lagrangian coherent structures provide a new powerful technique to detect time- or space-dependent transport barriers, and objective (i.e., frame invariant) kinematic and magnetic vortices in space plasma turbulence. We discuss the basic concepts of Lagrangian coherent structures in plasmas based on the computation of the finite-time Lyapunov exponent, the Lagrangian averaged vorticity deviation and the integrated averaged current deviation, as well as their applications to numerical simulations of MHD turbulence and space and ground observations.
