Microphysics-Based Bulk Parameterizations of Enthalpy and Momentum Fluxes for Tropical Cyclones

Sydney Sroka and Kerry Emanuel
Massachusetts Institute of Technology, United States of America

Despite the powerful influence that sea spray has on air-sea enthalpy and momentum fluxes, most state-of-the-art tropical cyclone forecast models do not incorporate the microphysics of sea spray evaporation into their boundary layer flux schemes. Since the air-sea enthalpy and momentum fluxes control a tropical cyclone's intensification rate, increasing the accuracy of the associated bulk parameterizations is crucially important for improving forecast skill. New microphysics-based bulk parameterizations for enthalpy and momentum flux through the tropical cyclone boundary layer are developed from a set of prognostic evaporation equations and numerical simulations of evaporating, multiphase flow subject to extreme wind speeds. The microphysics-based parameterizations are computationally inexpensive and are functions of the local environmental conditions; these features allow forecast models to efficiently vary the air-sea enthalpy and momentum fluxes in space and time. By developing microphysics-based bulk parameterizations, the influence that sea spray exerts on tropical cyclone intensification can be more accurately simulated and intensity forecasts could be improved.