EGU2020-4459
https://doi.org/10.5194/egusphere-egu2020-4459
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

spatial and temporal changes in SO2 over China in the recent decade and the Impacts of emissions and meteorology

Ting Wang1, Pucai Wang1, Nicolas Theys2, Dan Tong3, François Hendrick2, Qiang Zhang3, and Michel Van Roozendael2
Ting Wang et al.
  • 1Institute of Atmospheric Physics, Chinese Academy of Sciences
  • 2Royal Belgian Institute for Space Aeronomy, Belgium
  • 3Tsinghua University, China

The spatial and temporal changes of SO2 regimes over China during 2005 to 2016 and their associated driving mechanism are investigated based on a state-of-the-art retrieval dataset. Climatological SO2exhibits pronounced seasonal and regional variations, with higher loadings in wintertime and two prominent maxima centered in the North China Plain and the Cheng-Yu District. In the last decade, overall SO2 decreasing trends have been reported nationwide, with spatially varying downward rates according to a general rule—the higher the SO2 loading, the more significant the decrease. However, such decline is in fact not monotonic, but instead four distinct temporal regimes can be identified by empirical orthogonal function analysis. After an initial rise at the beginning, SO2 in China undergoes two sharp drops in the periods 2007-2008 and 2014-2016, amid which 5-year moderate rebounding is sustained. Despite spatial coherent behaviors, different mechanisms are tied to North China and South China. In North China, the same four regimes are detected in the time series of emission that is expected to drive the regime of atmospheric SO2, with a percentage of explained variance amounting to 81%. In contrast to North China, SO2 emissions in South China exhibit a continuous descending tendency, due to the coordinated cuts of industrial and household emissions. As a result, the role of emissions only makes up about 45% of the SO2 variation, primarily owing to the decoupled pathways of emission and atmospheric content during 2009 to 2013 when the emissions continue to decline but atmospheric content witnesses a rebound. Unfavorable meteorological conditions, including deficient precipitation, weaker wind speed and increased static stability, outweigh the effect of decreasing emissions and thus give rise to the rebound of SO2 during 2009 to 2013.

How to cite: Wang, T., Wang, P., Theys, N., Tong, D., Hendrick, F., Zhang, Q., and Van Roozendael, M.: spatial and temporal changes in SO2 over China in the recent decade and the Impacts of emissions and meteorology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4459, https://doi.org/10.5194/egusphere-egu2020-4459, 2020