EGU2020-503
https://doi.org/10.5194/egusphere-egu2020-503
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Importance of concavity for interpreting rates and patterns of landscape evolution from river profiles

Boris Gailleton1, Simon Mudd1, Fiona Clubb2, Martin Hurst3, and Stuart Grieve4
Boris Gailleton et al.
  • 1University of Edinburgh, School of Geoscience, institut of Geography, Edinburgh, United Kingdom of Great Britain and Northern Ireland (b.gailleton@sms.ed.ac.uk)
  • 2Durham University, Department of Geography, Durham, United Kingdom of Great Britain and Northern Ireland
  • 3University of Glasgow, School of Geographical & Earth Sciences, Glasgow, United Kingdom of Great Britain and Northern Ireland
  • 4Queen Mary University of London, School of Geography, London, United Kingdom of Great Britain and Northern Ireland

The analysis of river profiles is a fundamental tool in modern quantitative geomorphology. Since the 1960's, workers have demonstrated a systematic power-law relationship between river gradient and discharge, or its proxy drainage area, predicting a steepening of rivers towards the headwaters. This relationship provides means of quantitatively describing river profiles by extracting a concavity index (θ), the rate at which slope decreases as a function of drainage area, and steepness index (ks), the steepness of river reaches independent of changes in drainage area. Recent developments have provided an alternative representation of the slope-area relationship, aiming to circumvent its high sensitivity to topographic noise and to the branching nature of fluvial networks by directly integrating drainage area normalised to a concavity index into a transformed coordinate (χ). These parameters can be easily extracted from digital elevation models, resulting in their widespread application to detect tectonic, climatic, and autogenic signals from landscape morphology, such as active faulting, stream piracy, drainage divide migration or sea-level changes.

River profile concavity, or θ, is an essential metric to constrain, as it is necessary to fix a reference value θref in order to compare χ or ks values between different drainage basins. This exposes a key problem with the slope-area relationship: the watersheds within a study area do not necessarily all have the same optimal θ, potentially leading to incorrect interpretations of the relative distribution of χ and ks within a landscape. This problem is enhanced over large spatial scales, such as over the width of an orogen, where the probability of θ heterogeneity increases drastically. However, the distortion of χ and ks linked to a θref being different than the local best-fit has been poorly explored: we currently do not know how much these concavity variations influence channel steepness interpretations.

In this contribution, we explore the extent of the effect of varying concavity on channel steepness using analytical and numerical methods both on landscape evolution models and real landscapes. We show that (i) relative values of χ and ks, i.e location of local maxima, minima and variations, can be significantly and non-linearly impacted as a function of their Δθ from optimal θ and drainage area; (ii) we identify cases where asymmetries in θ can cause incorrect interpretations of changes in channel steepness (iii) present tools to quantify the extent and therefore the risk of misinterpretation.

How to cite: Gailleton, B., Mudd, S., Clubb, F., Hurst, M., and Grieve, S.: Importance of concavity for interpreting rates and patterns of landscape evolution from river profiles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-503, https://doi.org/10.5194/egusphere-egu2020-503, 2019

Displays

Display file