Spatial Variability of Source and Attenuation Characteristics in Large Ground-Motion Datasets

Sreeram Reddy Kotha1,2, Graeme Weatherill2, Dino Bindi2, and Fabrice Cotton2,3
1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
2Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467 Potsdam, Germany
3University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

Ground-Motion Models (GMMs) characterize the random distributions of ground-motions for a combination of earthquake source, wave travel-path, and the affected site's geological properties. Typically, GMMs are regressed over a compendium of strong ground-motion recordings collected from several earthquakes recorded at multiple sites scattered across a variety of geographical regions. The necessity of compiling such large datasets is to expand the range of magnitude, distance, and site-types; in order to regress a GMM capable of predicting realistic ground-motions for rare earthquake scenarios, e.g. large magnitudes at short distances from a reference rock site. The European Strong-Motion (ESM) dataset is one such compendium of observations from a few hundred shallow crustal earthquakes recorded at a several hundred seismic stations in Europe and Middle-East.

We developed new GMMs from the ESM dataset, capable of predicting both the response spectra and Fourier spectra in a broadband of periods and frequencies, respectively. However, given the clear tectonic and geological diversity of the data, possible regional and site-specific differences in observed ground-motions needed to be quantified; whilst also considering the possible contamination of data from outliers. Quantified regional differences indicate that high-frequency ground-motions attenuate faster with distance in Italy compared to the rest of Europe, as well as systematically weaker ground-motions from central Italian earthquakes. In addition, residual analyses evidence anisotropic attenuation of low frequency ground-motions, imitating the pattern of shear-wave energy radiation. With increasing spatial variability of ground-motion data, the GMM prediction variability apparently increases. Hence, robust mixed-effects regressions and residual analyses are employed to relax the ergodic assumption.

Large datasets, such as the ESM, NGA-West2, and from KiK-Net, provide ample opportunity to identify and evaluate the previously hypothesized event-to-event, region-to-region, and site-to-site differences in ground-motions. With the appropriate statistical methods, these variabilities can be quantified and applied in seismic hazard and risk predictions. We intend to present the new GMMs: their development, performance and applicability, prospective improvements and research needs.