EGU2020-5255
https://doi.org/10.5194/egusphere-egu2020-5255
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation

Jiaxin Huang, Xin Li, Hongbo Lv, and Yun Xiong
Jiaxin Huang et al.
  • Technische Universität Berlin, Institute of Geodesy and Geo information science, Faculty VI, Germany (jxhuang@gfz-potsdam.de)

The performance of precise point positioning (PPP) can be significantly improved with multi-GNSS observations, but it still needs more than ten minutes to obtain positioning results at centimeter-level accuracy. In order to shorten the initialization time and improve the positioning accuracy, we develop a multi-GNSS (GPS + GLONASS + Galileo + BDS) PPP method augmented by precise atmospheric corrections to achieve instantaneous ambiguity resolution (IAR). In the proposed method, regional augmentation corrections including precise atmospheric corrections and satellite uncalibrated phase delays (UPDs) are derived from PPP fixed solutions at reference network and provided to user stations for correcting the dual-frequency raw observations. Then the regional augmentation corrections from nearby reference stations are interpolated on the client through a modified linear combination method (MLCM). With the corrected observations, IAR can be achieved with centimeter-level accuracy. This method is validated experimentally with Hong Kong CORS network, and the results indicate that multi-GNSS fusion can improve the performance in terms of both positioning accuracy and reliability of AR. The percentage of IAR for multi-GNSS solutions is up to 99.7%, while the percentage of GPS-only solutions is 88.7% when the cut-off elevation angle is 10°. The benefit of multi-GNSS fusion is more significant with high cut-off elevation angle. The percentage of IAR can be still above 98.4% for multi-GNSS solutions while the result of GPS-only solutions is below 43.5% when the cut-off elevation angle reaches 30°.  The positioning accuracy of multi-GNSS solutions is improved by 30.0% on the horizontal direction (0.7 cm) and 17.1% on the vertical direction (2.9 cm) compared to GPS-only solutions.

How to cite: Huang, J., Li, X., Lv, H., and Xiong, Y.: Multi-GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5255, https://doi.org/10.5194/egusphere-egu2020-5255, 2020

This abstract will not be presented.