Back-propagating super-shear rupture in the 2016 M7.1 Romanche transform fault earthquake

Stephen Hicks¹, Ryo Okuwaki³, Andreas Steinberg⁴, Catherine Rychert¹, Nicholas Harmon¹, Rachel Abercrombie⁵, Petros Bogiaztis¹, David Schlaphorst⁷, Jiri Zahradnik⁸, J-Michael Kendall⁹, Yugi Yagi³, Kousuke Shimizu¹⁰, and Henriette Sudhaus⁴

¹Imperial College London, Earth Science and Engineering, London, United Kingdom of Great Britain and Northern Ireland (s.hicks@imperial.ac.uk)
³Faculty of Life and Environmental Sciences, University of Tsukuba, Japan.
⁴Department of Geosciences, Christian-Albrechts-Universität, Kiel, Germany
⁵Department of Earth and Environment, Boston University, United States
⁷Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
⁸Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic.
⁹Department of Earth Sciences, University of Oxford, United Kingdom.
¹⁰Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.

Rupture propagation of an earthquake strongly influences potentially destructive ground shaking. Variable rupture behaviour is often caused by complex fault geometries, masking information on fundamental frictional properties. Geometrically smoother ocean transform fault (OTF) plate boundaries offer a favourable environment to study fault zone dynamics because strain is accommodated along a single, wide zone (up to 20 km width) offsetting homogeneous geology comprising altered mafic or ultramafic rocks. However, fault friction during OTF ruptures is unknown: no large (Mw>7.0) ruptures had been captured and imaged in detail. In 2016, we recorded an Mw 7.1 earthquake on the Romanche OTF in the equatorial Atlantic on nearby seafloor seismometers. We show that this rupture had two phases: (1) up and eastwards propagation towards the weaker ridge-transform intersection (RTI), then (2) unusually, back-propagation westwards at super-shear speed toward the fault's centre. Deep slip into weak fault segments facilitated larger moment release on shallow locked zones, highlighting that even ruptures along a single distinct fault zone can be highly dynamic. The possibility of reversing ruptures is absent in rupture simulations and unaccounted for in hazard assessments.