Electron density and temperature over Jupiter's main auroral emission

Frederic Allegrini1,2, William Kurth3, Joachim Saur4, Randy Gladstone1,2, Fran Bagenal5, Scott Bolton1, George Clark6, Jack Connerney2,8, Rob Ebert1,2, George Hospodarsky, Vincent Hue1, Masafumi Imai3, Steve Levin9, Philippe Louarn10, Barry Mauk6, Dave McComas11, Ali Sulaiman3, Jamey Szalay11, Philip W. Valek1, and Rob J. Wilson5
1Southwest Research Institute, Department of Space Science, San Antonio, Texas, United States of America (fallegrini@swri.edu)
2Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA.
3University of Iowa, Iowa City, Iowa, USA.
4Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
5Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
6The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
7Space Research Corporation, Annapolis MD 21403, USA
8NASA Goddard Space Flight Center, Greenbelt MD 20771, USA
9Jet Propulsion Laboratory, Pasadena, California, USA
10 Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France
11Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

Jupiter’s ultraviolet (UV) aurora, the most powerful and intense in the solar system, is caused by energetic electrons precipitating from the magnetosphere into the atmosphere where they excite the molecular hydrogen. Electrons from ~50 eV to ~100 keV are characterized over the auroral regions by the Jovian Auroral Distributions Experiment (JADE) on Juno. Investigating the characteristics of electron distributions at these energies is critical for understanding the source population for the electrons that produce Jupiter’s UV aurora and the mechanisms that accelerated them to keV and MeV energies. In this study, we present a survey of electron distributions and moments derived from JADE in Jupiter’s polar magnetosphere. We quantify the electron properties (e.g. density and temperature) and explore similarities and differences in their distributions over several Juno perijove passes, focusing on regions near the main emission.