EGU2020-5720
https://doi.org/10.5194/egusphere-egu2020-5720
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

High pressure serpentinization and abiotic methanogenesis in metaperidotite from the Appalachian subduction, northern Vermont

Antoine Boutier1,2, Alberto Vitale Brovarone1,3, Isabelle Martinez2, Olivier Sissmann4, and Sara Mana5
Antoine Boutier et al.
  • 1University of Turin, Departement of Earth sciences, Italy (antoine.boutier@unito.it)
  • 2Institut de Physique du Globe de Paris, Université Paris Diderot, Paris, France
  • 3Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD UR206, 75005 Paris, France
  • 4IFP Energies Nouvelles, Rueil-Malmaison Cedex, France
  • 5Department of Geological Sciences, Salem State University, Salem, MA 01970, USA

Serpentinization is the process of hydroxylation of olivine-rich ultramafic rocks to produce minerals such as serpentine, brucite, magnetite, and may release H2. The hydrogen produced through serpentinization reactions can be involved in abiotic reaction pathways leading to the genesis of abiotic light hydrocarbons such as methane (CH4). Examples of this phenomenon exist at the seafloor, such as at the serpentinite-hosted Lost City hydrothermal field, and on land in ophiolites at relatively shallow depths. However, the possibility for serpentinization to occur at greater depths, especially in subduction zones, raises new questions on the genesis of abiotic hydrocarbons at convergent margin and its impact on the deep carbon cycle. High-pressure ultramafic bodies exhumed in metamorphic belts can provide insights on the mechanisms of high-pressure serpentinization in subduction zones and on the chemistry of the resulting fluids. This study focuses on the ultramafic Belvidere Mountain complex belonging to the Appalachian belt of northern Vermont, USA. Microstructures show overgrowth of olivine by delicate antigorite crystals, suggesting olivine serpentinization at high-temperature consistent with the subduction evolution of the Belvidere Mountain complex.  Fluid inclusion trails cross-cutting the primary olivine relicts  suggest their formation during the antigorite serpentinization event. MicroRaman spectroscopy on the fluid inclusions reveals a CH4-rich gaseous composition, with trace of N2, NH3 and S-H compound. Moreover, the precipitation of daughter minerals of lizardite and brucite in the fluid inclusions indicate the initial presence of H2O in the fluid. Secondary olivine is observed at the rim of pseudomorphosed primary pyroxenes (bastite), and has higher forsterite (Fo95) content with respect to the primary olivine (Fo92), suggesting either a syn-serpentinization olivine precipitation in the subduction zone, or a successive partial dehydration of the antigorite during metamorphism. Decreasing oxygen fugacity during serpentinization and related abiotic reduction of carbon at high-pressure conditions is proposed at the origin of methane in the fluid inclusions. This potentially places the Belvidere Mountain complex as an example of deep serpentinization related to high-pressure genesis of abiotic methane.

How to cite: Boutier, A., Vitale Brovarone, A., Martinez, I., Sissmann, O., and Mana, S.: High pressure serpentinization and abiotic methanogenesis in metaperidotite from the Appalachian subduction, northern Vermont, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5720, https://doi.org/10.5194/egusphere-egu2020-5720, 2020

Displays

Display file