EGU2020-5915
https://doi.org/10.5194/egusphere-egu2020-5915
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Arctic Ocean Sea Ice Area Extent Cyclicity and Non-Stationarity

Reginald Muskett and Syun-Ichi Akasofu
Reginald Muskett and Syun-Ichi Akasofu
  • University of Alaska Fairbanks, IARC, Fairbanks, United States of America (reginald.muskett@gmail.com)

Arctic sea ice is a key component of the Arctic hydrologic cycle. This cycle is connected to land and ocean temperature variations and Arctic snow cover variations, spatially and temporally. Arctic temperature variations from historical observations shows an early 20th century increase (i.e. warming), followed by a period of Arctic temperature decrease (i.e. cooling) since the 1940s, which was followed by another period of Arctic temperature increase since the 1970s that continues into the two decades of the 21st century. Evidence has been accumulating that Arctic sea ice extent can experience multi-decadal to centennial time scale variations as it is a component of the Arctic Geohydrological System. 


We investigate the multi-satellite and sensor daily values of area extent of Arctic sea ice since SMMR on Nimbus 7 (1978) to AMSR2 on GCOM-W1 (2019). From the daily time series we use the first year-cycle as a wave-pattern to compare to all subsequent years-cycles through April 2020 (in progress), and constitute a derivative time series. In this time series we find the emergence of a multi-decadal cycle, showing a relative minimum during the period of 2007 to 2014, and subsequently rising. This may be related to an 80-year cycle (hypothesis). The Earth’s weather system is principally driven the solar radiation and its variations. If the multi-decadal cycle in Arctic sea ice area extent that we interpret continues, it may be linked physically to the Wolf-Gleissberg cycle, a factor in the variations of terrestrial cosmogenic isotopes, ocean sediment layering and glacial varves, ENSO and Aurora.

Our hypothesis and results give more evidence that the multi-decadal variation of Arctic sea ice area extent is controlled by natural physical processes of the Sun-Earth system. 

How to cite: Muskett, R. and Akasofu, S.-I.: Arctic Ocean Sea Ice Area Extent Cyclicity and Non-Stationarity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5915, https://doi.org/10.5194/egusphere-egu2020-5915, 2020

This abstract will not be presented.