Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand, SE Asia

Bin Wu1,2, Xiaodan Wu2,3, Xuefa Shi1,2, Shuqing Qiao1,2, Shengfa Liu1,2, Limin Hu1,2, Jihua Liu1,2, Yazhi Bai1,2, Aimei Zhu1,2, Narumol Kornkanitnan4, and Somkiat Khokiattiwong4

1Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, P. R. China
2Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, P. R. China.
3CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
4Marine and Coastal Resources Research and Development Institute, Department of Marine and Coastal Resources, Bangkok, Thailand

The seasonal reversal of monsoon climatology modulates precipitation, currents, river influx and a variety of biogeochemical processes. In the present study, we evaluated the role of tropical monsoon pertaining to fluvial discharge, sediment load, coastal current and water stratification on seasonal organic carbon dynamics during four sampling campaigns in the Upper Gulf of Thailand (UGoT), SE Asia. This study demonstrates that particulate organic carbon (POC) is closely correlated with the river influx of suspended sediment, which is generally regulated by the local rainfall. Higher POC is found near the large estuarine section (Chao Phraya River, CHAO) during southwest monsoon period and the small estuarine section (Mae Klong River, MK) during the tropical cyclones impacted November 2013. POC in the estuarine sections is influenced more by the seasonal shift than the coastal sections. Land-derived organic matter prevails in the small estuarine and coastal sections, while marine-derived organic matter dominates in the CHAO and MK impacted estuarine sections. Total organic carbon (TOC) however displays less significant seasonal monsoon variations than POC. Further, TOC tends to accumulate in the sub-silt fraction of sediments, which mainly occurs in the small estuarine and eastern coastal sections and is obviously influenced more by marine-derived factors. TOC in surface sediment of the CHAO and MK influenced sections however displays more seasonal variations with prevailing river input as evidenced by coarser sediment and higher C/N ratios. Moreover, the almost year round water stratification across the region acts as the barrier in retaining organic carbon in the estuaries and their vicinities from dispersal into the lower portion of Gulf of Thailand. High sedimentation rate (~1.1 cm yr-1) further facilitates the organic carbon burial in the study area. The delivery, dispersal and burial of organic carbon are closely associated with the climate controlled precipitation, and thus the tropical monsoon climatology under the global warming in particular is an important factor influencing the organic carbon in the UGoT.

Acknowledgements
This study was supported by National Programme on Global Change and Air-Sea Interaction (GASI-02-IND-CJ05, GASI-GEOGE-03), the Natural Science Foundation of China (U1606401), the Qingdao National Laboratory for Marine Science and Technology (2016ASKJ13), the China-Thailand cooperation project “Research on Vulnerability of Coastal Zones”, and the Taishan Scholar Program of Shandong.