Building spatial-temporal NO2 land use regression models in complex urban environment

Peng Wei, Yang Xing, Li Sun, and Zhi Ning
The Hong Kong University of Science and Technology, Hong Kong, China (pweiaa@connect.ust.hk)

Air quality and traffic-related pollutants in urban areas are major concerns especially in meg-cities. Current Air Quality Monitoring Station (AQMS) cannot sufficiently reveal these pollution conditions with limited point measurements and limited information cannot supply adequate insight on personal exposure in a complex urban environment. Land Use Regression (LUR) model provided a feasible solution for estimating outdoor personal exposure by adding multiple data sources. However, fixed-site passive monitoring still lacks enough spatial coverage or spatial flexibility to estimate pollutant distribution at the fine-scale level.

A Mobile Air Sensor Network (MASEN) project was deployed in the Hong Kong area, with electrochemical gas sensors installed on the routine buses to capture on-road NOx pollutant measurement, the data was collected by the integrated sensor system and transfer to the database for real-time visualization. Compared with previous mobile measurements used for LUR model building which limited to 1-2 routes, this measurement covered major roads in the Hong Kong area and get an overview of pollutant distribution at various ambient. Two main variables were introduced to improve the model performance: 1) Sky View Factor (SVF) which represented pollutant dispersion status were obtained from Google street view image, a deep learning model was used for scene parsing to recognized targets in this procedure, 2) a Real-time Traffic Congestion Index (RTCI) which represented traffic pollutants emission was obtained from Google map and merged with road network. A common LUR model will be built based on a distance-decay regression selection strategy for variables selection. Meanwhile, a spatial-temporal LUR model will be built which contained both diurnal variability and day-to-day variability. Finally, a high-resolution pollution map of the urban areas will illustrate NO2 pollutant distribution.

In this work, we aimed at estimating traffic-related pollutants in a complex city environment and identifying hotspots at both spatial and temporal aspects. Meanwhile, the novel data source which closely associated with traffic-related pollutant emission also gives a better understanding of guidance on urban planning.