A 45 kyr laminae record from the Dead Sea: Implications for basin erosion and floods recurrence

Nicolas Waldmann1, Yin Lu2, Revital Bookman1, and Shmulik Marco3

1University of Haifa, Charney School of Marine Sciences, Department of Marine Geosciences, Haifa, Israel (nwaldmann@univ.haifa.ac.il)
2Geomorphology and Quaternary Geology Research Group, University of Liege, Belgium (yin.lu@uliege.be)
3Department of Geophysics, Tel Aviv University, Tel Aviv 6997801, Israel (shmulikm@tau.ac.il)

Recording and analyzing how climate change impacts flood recurrence, basin erosion, and sedimentation can improve our understanding of these systems. The aragonite-detritus laminae couplets comprising the lacustrine formations that were deposited in the Dead Sea Basin are considered as faithful monitors of the freshwater supply to the lakes. We count a total of \textasciitilde5600 laminae couplets deposited in the last 45 kyr (MIS3-MIS1) at the Dead Sea depocenter, which encompass the upper 141.6 m of the ICDP Core 5017-1. The present study shows that aragonite and detritus laminae are thinner and occur at high frequency during MIS 3-2, while they are much thicker and less frequent during MIS 1. By analyzing multiple climate-connected factors, we propose that significant lake-level drops, enhanced dust input, and low vegetative cover in the drainage basin during the last deglaciation (22-11.6 ka) have considerably increased erodible materials in the Dead Sea watershed. We find a decoupling existed between the significant lake-level drop/lake size reduction and lamina thickness change during the last deglaciation. We argue that during the last glacial and the Holocene, the variation of lamina thickness at the multiple-millennium scale was not controlled directly by the lake-level/size change. We interpret this decoupling implying the transport capacity of flash-floods is low and might be saturated by the oversupply of erodible materials, and indicating a transport-limited regime during the time period. We suggest that the observed thickness and frequency distribution of aragonite-detritus laminae points to the high frequency of small-magnitude floods during the last glacial period, in contrast to low frequency, but large-magnitude floods during the Holocene.