EGU2020-6702
https://doi.org/10.5194/egusphere-egu2020-6702
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Light absorption properties, chromophore composition and sources of brown carbon aerosol in Xi’an, Northwest China

Ru-Jin Huang1,2, Wei Yuan1,2, Lu Yang1,2, Jie Guo1,2, Jing Duan1,2, and Haiyan Ni1,2
Ru-Jin Huang et al.
  • 1State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
  • 2Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

The impact of brown carbon aerosol (BrC) on the Earth’s radiative forcing balance has been widely recognized but remains uncertain, mainly because the relationships among BrC sources, chromophores, and optical properties of aerosol are poorly understood (Feng et al., 2013; Laskin et al., 2015). In this work, the light absorption properties and chromophore composition of BrC were investigated for samples collected in Xi’an, Northwest China from 2015 to 2016. Both absorption Ångström exponent and mass absorption efficiency show distinct seasonal differences, which could be attributed to the differences in sources and chromophore composition of BrC. Three groups of light-absorbing organics were found to be important BrC chromophores, including those show multiple absorption peaks at wavelength > 350 nm (12 polycyclic aromatic hydrocarbons and their derivatives) and those show single absorption peak at wavelength < 350 nm (10 nitrophenols and nitrosalicylic acids and 3 methoxyphenols). These measured BrC chromophores show distinct seasonal differences and contribute on average about 1.1% and 3.3% of light absorption of methanol-soluble BrC at 365 nm in summer and winter, respectively, about 7 and 5 times higher than the corresponding mass fractions in total organic carbon. The sources of BrC were resolved by positive matrix factorization (PMF) using these chromophores instead of commonly used non-light absorbing organic markers as model inputs. Our results show that in spring vehicular emissions and secondary formation are major sources of BrC (~70%), in fall coal combustion and vehicular emissions are major sources (~70%), in winter biomass burning and coal combustion become major sources (~80%), while in summer secondary BrC dominates (~60%).

 

References:

Feng, Y., V. Ramanathan, and V. R. Kotamarthi: Brown carbon: A significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607-8621, doi:10.5194/acp-13-8607-2013, 2013.

Laskin, A., J. Laskin, and S. A. Nizkorodov: Chemistry of atmospheric brown carbon, Chem. Rev., 115, 4335-4382, doi:10.1021/cr5006167, 2015.

How to cite: Huang, R.-J., Yuan, W., Yang, L., Guo, J., Duan, J., and Ni, H.: Light absorption properties, chromophore composition and sources of brown carbon aerosol in Xi’an, Northwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6702, https://doi.org/10.5194/egusphere-egu2020-6702, 2020

This abstract will not be presented.