The Paleoproterozoic Kandalaksha-Kolvitsa gabbro-anorthosite complex (Fennoscandian Shield): new U-Pb, Sm-Nd and Nd-Sr (ID-TIMS) isotope data on the age of formation, metamorphism and geochemical features of zircon (LA-ICP-MS)

Ekaterina Steshenko, Tamara Bayanova, Pavel Serov, and Nadezhda Ekimova
Geological Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Russian Federation (katerina-steshen@mail.ru)

The paper provides new U-Pb, Sm-Nd and Nd-Sr isotope-geochronological data on rocks of the Paleoproterozoic Kandalaksha-Kolvitsa gabbro-anorthosite complex. REE contents in zircons from basic rock varieties of the Kandalaksha-Kolvitsa area have been defined in situ using LA-ICP-MS. Plots of REE distribution have been constructed, confirming the magmatic origin of zircon. Temperatures of zircon crystallization have been estimated, using a Ti-in-zircon geochronometer. For the first time, the U-Pb method with ^{205}Pb artificial tracer has been applied to date single zircon grains (2448±5 Ma) from metagabbro of the Kolvitsa massif. The U-Pb analysis of zircon from anorthosites of the Kandalaksha massif has dated the early stage of the granulite metamorphism at 2230±10 Ma. The Sm-Nd isotope age has been estimated on metamorphic minerals (apatite, garnet, sulfides) and the rock at 1985±17 Ma (granulite metamorphism) for the Kolvitsa massif, 1887±37 Ma (high-temperature metasomatic transformations) and 1692±71 Ma (regional fluid reworking) for the Kandalaksha massif. The Sm-Nd model age of metagabbro is 3.3 Ga with negative value εNd=4.6, which corresponds either with processes of crustal contamination, or with primary enriched mantle reservoir of primary magmas.

This research was funded by the Scientific Research Contract of GI KSC RAS No. 0226-2019-0053, grants of the Russian Foundation for Basic Research NoNo. 18-05-70082 «Arctic Resources», 18-35-00246 mol_a, and the Presidium RAS Program No. 8.